CE-317 GIS/RS Application to Civil Engineering Spring 2011

- •Engr. Faisal ur Rehman
- •Lecture 03: Coordinate Systems

Datums

- Datums: Datums define the reference systems that describe the size and shape of the earth
- It defines the origin and orientation of the coordinate systems used to map the earth.

Datum

- Modern geodetic datums range from flat-earth models used for plane surveying to complex models used for international applications
- Which completely describe the size shape, orientation, gravity field, and angular velocity of the earth.

Datum

 Geodetic datums and the coordinate reference systems based on them were developed to describe geographic positions for surveying, mapping, and navigation.

Shape of Earth

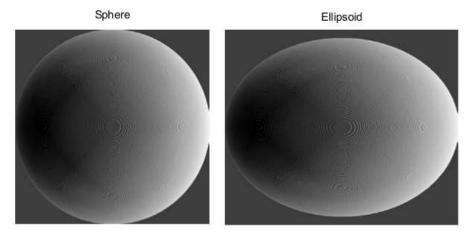


Figure 3.3: Earth shape: sphere or ellipsoid.

Datum Types

- 1. Horizontal: Datums that define the relationship between the physical earth and horizontal coordinates such as latitude and longitude.
- Examples include the North American Datum of 1927 (NAD27) and the European Datum 1950 (ED50).

Datum Types

- 2. Vertical: Datums that define level surfaces.
- Examples include the National Geodetic Vertical Datum of 1929 (NGVD29) and the North American Vertical Datum of 1988 (NAVD88).
- Some are based on sea-level measurements and levelling networks (NGVD29), others on gravity measurements (NAVD88).

Datum Types

- 3. Complete: Datums that describe both vertical and horizontal systems. Some, such as World Geodetic System 1984 (WGS-84)
- also describe other parameters such as the rotation rate of the earth
- and various physical constants such as the angular velocity of the earth and the earth's gravitational constant.

Reference Ellipsoids

- Reference ellipsoids are defined by either semimajor (equatorial radius) and semi-minor (polar radius) axes, or the relationship between the semimajor axis and the flattening of the ellipsoid (expressed as its eccentricity).
- Many reference ellipsoids are in use by different nations and agencies.
- Reference ellipsoids are identified by a name and often by a year for example, the Clarke 1866 ellipsoid is different from the Clarke 1858 and the Clarke 1880 ellipsoids.

Geodetic Datums

- Precise positioning must also account for irregularities in the earth's surface due to factors in addition to polar flattening.
- Topographic and sea-level models attempt to model the physical variations of the surface:

Geodetic Datums

- The topographic surface of the earth is the actual surface of the land and sea at some moment in time.
 - Aircraft navigators have a special interest in maintaining a positive height vector above this surface.

Geodetic Datums

- Sea level can be thought of as the average surface of the oceans, though its true definition is far more complex.
 - Specific methods for determining sea level and the temporal spans used in these calculations vary considerably.
 - Tidal forces and gravity differences from location to location cause even this smoothed surface to vary over the globe by hundreds of meters.

GEOID

- Gravity models and geoids are used to represent local variations in gravity that change the local definition of a level surface.
- Gravity models attempt to describe in detail the variations in the gravity field.
- The importance of this effort is related to the idea of levelling.
- Plane and geodetic surveying uses the idea of a plane perpendicular to the gravity surface of the earth

GEOID

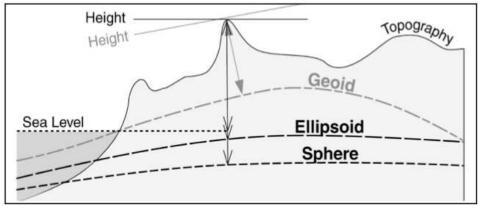


Figure 3.4: Elevations defined with reference to a sphere, ellipsoid, geoid, or local sea level will all be different. Even local on as latitude and longitude will vary somewhat.

Reference System

- Global systems can refer to positions over much of the Earth.
- Regional systems have been defined for many specific areas, often covering national, state, or provincial areas.

General Coordinate Systems

- Plane
- Global

Plane Coordinate System

Plane coordinate system – Cartesian coordinates:
Cartesian coordinates are determined by locating an origin there after setting two axes through origin in fixed directions, at right angles to each other.

- By convention these are usually identified as x and y, where x is horizontal and y vertical (x is east, y is north).
- To measure linear displacement from the origin in directions defined by the two axes produces an ordered (x, y) pairs.

Storing Coordinates

- Integer vs real numbers:
 - The number is the product (a \times 10b), e.g., +1234 +2 would indicate 0.1234 \times 102 or 12.34.

Storing Coordinates

- Computer precision: In the computer, the number of digits which can be stored for each value is limited by the hardware, integers are normally stored using 16 bits of memory and can have a range from 32767 to +32767.
- Floating point numbers can use single or double precision.
- Single precision commonly allocates 32 bits, or 4 bytes, of memory for each value, equivalent to 7 significant decimal digits

Plane Coordinate System

- Plane coordinate system Polar coordinates: Polar coordinates use distance from origin (r) and angle from fixed direction (q), usually fixed direction is north and angle is measured clockwise from it.
- Polar coordinates are useful for measuring from some fixed point such as the center of the city or when using data from sources such as ground surveys and radar.

To translate from (r, q) to (x,y)

???

Earth Coordinate Geometry

- The earth's spherical shape is more difficult to describe than a plane surface.
- Concepts from Cartesian coordinate geometry have been incorporated into the earth's coordinate system.
- Rotation of the Earth: The spinning of the earth on its imaginary axis is called rotation.
- The spinning has led to the creation of a system to determine points and directions on the sphere.

Earth Coordinate Geometry

- If the North Pole was extended, it would point to a fixed star, the North Star (Polaris).
- Any point on the earth's surface moves with the rotation and traces imaginary curved lines are Parallel of Latitude.
- The Equator: If a plane bisected the earth midway between the axis of rotation and perpendicular to it, the intersection with the surface would form a circle.

Earth Coordinate Geometry

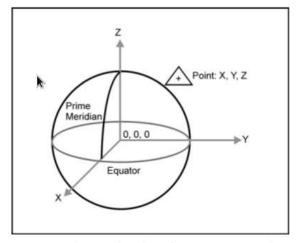


Figure 3.6: Earth Centered, Earth Fixed (ECEF) Cartesian coordinates can also be used to define three dimensional positions.

Earth Coordinate Geometry

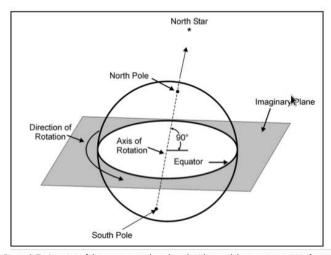


Figure 3.7: Location of the equator, north and south poles, and the imaginary axis of rotation.

The Geographic Grid

- The Geographic Grid: The spherical coordinate system with latitudes and longitudes used for determining the locations of surface features.
 - Parallels: east-west lines parallel to the equator.
 - Meridians: north-south lines connecting the poles.
 - Parallels are constantly parallel, and meridians converge at the poles.
 - Meridians and parallels always intersect at right angles.

The Geographic Grid

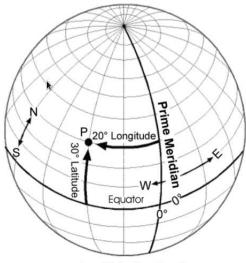


Figure 3.8: The Geographic grid

The Geographic Grid

- Degrees, Minutes, and Seconds: Angular measurement is used in addition to simple plane geometry to specify location on the earth's surface.
- This is based on a sexagesimal scale
- Great and Small Circles

Great and Small Circles

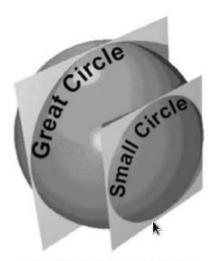


Figure 3.11: Great and small circles.

Projections

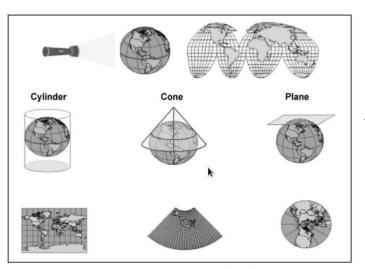


Figure 3.14: Map projections convert curved surface of the earth into a flat surface.